7,908 research outputs found

    Validation of the communications link analysis and simulation system (CLASS)

    Get PDF
    CLASS (Communication Link Analysis and Simulation System) is a software package developed for NASA to predict the communication and tracking performance of the Tracking and Data Relay Satellite System (TDRSS) services. The methods used to verify CLASS are described. The usefulness of a software tool such as CLASS depends strongly on the reliability and accuracy of the results it produces. For this reason, considerable attention was paid to validation throughout the CLASS development

    Shuttle Ku-band signal design study

    Get PDF
    Carrier synchronization and data demodulation of Unbalanced Quadriphase Shift Keyed (UQPSK) Shuttle communications' signals by optimum and suboptimum methods are discussed. The problem of analyzing carrier reconstruction techniques for unbalanced QPSK signal formats is addressed. An evaluation of the demodulation approach of the Ku-Band Shuttle return link for UQPSK when the I-Q channel power ratio is large is carried out. The effects that Shuttle rocket motor plumes have on the RF communications are determined also. The effect of data asymmetry on bit error probability is discussed

    Antiferromagnetic Spin Fluctuations in the Metallic Phase of Quasi-Two-Dimensional Organic Superconductors

    Get PDF
    We give a quantitative analysis of the previously published nuclear magnetic resonance (NMR) experiments in the k-(ET)2X family of organic charge transfer salts by using the phenomenological spin fluctuation model of Moriya, and Millis, Monien and Pines (M-MMP). For temperatures above T_nmr ~ 50 K, the model gives a good quantitative description of the data in the metallic phases of several k-(ET)2X materials. These materials display antiferromagnetic correlation lengths which increase with decreasing temperature and grow to several lattice constants by T_nmr. It is shown that the fact that the dimensionless Korringa ratio is much larger than unity is inconsistent with a broad class of theoretical models (such as dynamical mean-field theory) which neglects spatial correlations and/or vertex corrections. For materials close to the Mott insulating phase the nuclear spin relaxation rate, the Knight shift and the Korringa ratio all decrease significantly with decreasing temperature below T_nmr. This cannot be described by the M-MMP model and the most natural explanation is that a pseudogap, similar to that observed in the underdoped cuprate superconductors, opens up in the density of states below T_nmr. Such a pseudogap has recently been predicted to occur in the dimerised organic charge transfer salts materials by the resonating valence bond (RVB) theory. We propose specific new experiments on organic superconductors to elucidate these issues. For example, measurements to see if high magnetic fields or high pressures can be used to close the pseudogap would be extremely valuable.Comment: 11 pages, 2 figures. Accepted for publication in Phys. Rev.

    First-principle density-functional calculation of the Raman spectra of BEDT-TTF

    Get PDF
    We present a first-principles density-functional calculation for the Raman spectra of a neutral BEDT-TTF molecule. Our results are in excellent agreement with experimental results. We show that a planar structure is not a stable state of a neutral BEDT-TTF molecule. We consider three possible conformations and discuss their relation to disorder in these systems.Comment: 3 pages, 2 figures, submitted to the proceedings of ISCOM 200

    Shuttle/TDRSS modelling and link simulation study

    Get PDF
    A Shuttle/TDRSS S-band and Ku-band link simulation package called LinCsim was developed for the evaluation of link performance for specific Shuttle signal designs. The link models were described in detail and the transmitter distortion parameters or user constraints were carefully defined. The overall link degradation (excluding hardware degradations) relative to an ideal BPSK channel were given for various sets of user constraint values. The performance sensitivity to each individual user constraint was then illustrated. The effect of excessive Spacelab clock jitter on the return link BER performance was also investigated as was the problem of subcarrier recovery for the K-band Shuttle return link signal

    Electronic and magnetic properties of the ionic Hubbard model on the striped triangular lattice at 3/4 filling

    Get PDF
    We report a detailed study of a model Hamiltonian which exhibits a rich interplay of geometrical spin frustration, strong electronic correlations, and charge ordering. The character of the insulating phase depends on the magnitude of Delta/|t| and on the sign of t. We find a Mott insulator for Delta >> U >> |t|; a charge transfer insulator for U >> \Delta >> |t|; and a correlated covalent insulator for U >> \Delta ~ |t|. The charge transfer insulating state is investigated using a strong coupling expansion. The frustration of the triangular lattice can lead to antiferromagnetism or ferromagnetism depending on the sign of the hopping matrix element, t. We identify the "ring" exchange process around a triangular plaquette which determines the sign of the magnetic interactions. Exact diagonalization calculations are performed on the model for a wide range of parameters and compared to the strong coupling expansion. The regime U >> \Delta ~ |t| and t<0 is relevant to Na05CoO2. The calculated optical conductivity and the spectral density are discussed in the light of recent experiments on Na05CoO2.Comment: 15 pages, 15 figure

    Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi

    Full text link
    Spectroscopic observations of the 2006 outburst of the recurrent nova RS Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. Here we show that the observed evolution of the nova remnant can be explained by the diffusive shock acceleration of particles at the blast wave and the subsequent escape of the highest energy ions from the shock region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. The maximum energy that accelerated electrons and protons can have achieved in few days after outburst is found to be as high as a few TeV. Using the semi-analytic model of nonlinear diffusive shock acceleration developed by Berezhko & Ellison, we show that the postshock temperature of the shocked gas measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration efficiency.Comment: Accepted for publication in ApJ

    Ku-band system design study and TDRSS interface analysis

    Get PDF
    The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated

    Ferromagnetism, paramagnetism and a Curie-Weiss metal in an electron doped Hubbard model on a triangular lattice

    Get PDF
    Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative inter-site hopping amplitudes (t<0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t>0 a large enhancement of the effective mass, ferromagnetism and a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e. ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. We propose that `Curie-Weiss metal' phase observed in NaxCoO2 is a consequence of the crossover from ``bad metal'' with incoherent quasiparticles at temperatures T>T* and Fermi liquid behavior with enhanced parameters below T*, where T* is a low energy coherence scale induced by strong local Coulomb electron correlations. We propose a model which contains the charge ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.Comment: 24 pages, 15 figures; accepted for publication in Phys. Rev.

    Competition between Charge Ordering and Superconductivity in Layered Organic Conductors α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 (M = K, NH4_4)

    Full text link
    While the optical properties of the superconducting salt α\alpha-(BEDT-TTF)2_2NH4_4Hg(SCN)4_4 remain metallic down to 2 K, in the non-superconducting K-analog a pseudogap develops at frequencies of about 200 cm−1^{-1} for temperatures T < 200 K. Based on exact diagonalisation calculations on an extended Hubbard model at quarter-filling we argue that fluctuations associated with short range charge ordering are responsible for the observed low-frequency feature. The different ground states, including superconductivity, are a consequence of the proximity of these compounds to a quantum phase charge-ordering transition driven by the intermolecular Coulomb repulsion.Comment: 4 pages, 3 figure
    • …
    corecore